Tag Archives: Chlorine & Chloramine in Water Supply

Living Bacterial Skin Tonic – Instead of Soap?!

Last update 8/22/2015.

AOBiome linked to this post on their Facebook page: https://www.facebook.com/AOBiome

 

images-3

 

Information on a new product called AO+ Refreshing Cosmetic Mist caught my eye recently. (Scott, 2014)
It’s a liquid developed by a biotech start up company in Cambridge MA to spray on our bodies in lieu of – or as an adjunct to – taking showers. Showering with most soaps and shampoos kills all the healthy elements of our skin microbiome. The company, AOBiome, says its new living bacterial skin tonic, made of safe live-cultured Nitrosomonas bacteria, replenishes the biome of microscopic organisms that live on our skin.
This does indeed sound novel, interesting – and important!

 

images

 

I started this site to write about how the micro-organisms living in our guts – the gut microbiome – affect the entire body and how to restore your gut – and the rest of you – to good health. See The Gut Microbiome – Our Second Genome.  Reading about AOBiome’s brilliant work on restoring our skin’s microbiome, produced a moment of clarity in me – one of those true light bulb moment: It’s not just our gut’s we’re destroying but our other microbiomes as well.

 

 

FDA__antibacterial_soaps_are_ineffective_1946250000_4753974_ver1.0_640_480

 

Our usual approach to the bacteria and other micro-organisms living on our skins – and everywhere else we can get to them – is to KILL THEM DEAD. We regard bacteria and their relatives as dangerous and just plain nasty. So this is an entirely new approach – a U turn in how to think about bacteria: The new spray contains billions of cultivated Nitrosomonas eutropha, an ammonia-oxidizing bacteria (AOB) most commonly found in dirt and untreated water in rivers, lakes, and the sea.  (Martinko, 2014)

 

 

 

 

VARIOUS PARTS OF THE HUMAN MICROBIOME

 

 

Skin Microbiome
Artist’s Rendition of the Skin Microbiome – Our Second Genome. (Credit: genome.duke.edu)

 

 

The aggregates of micro-organisms living inside and on our bodies, collectively referred to as the human microbiome or microbiota, make their homes in many places:
  • In our GI tracts
  • On the surface of and in deep layers of our skin
  • On our hair
  • In the saliva and mucosa in our mouths
  • In our noses and sinuses
  • In our urogenital tracts
  • In the conjunctiva (the lining inside the eyelids and covering the white part of the eye)

 

 

Some of the Microbiomes of the Human Body. (Credit: National Human Genome Research Institute
Some of the Microbiomes of the Human Body. (Credit: National Human Genome Research Institute

 

 

 

 

OUR SECOND GENOME – THE HUMAN MICROBIOME

Sources: (AOBiome, 2014), (Wikipedia, 2014), and (Baylor College of Medicine, 2013-2014)
  • There are 100’s of trillions of micro-organisms in the various microbiomes in and on our bodies, our Second Genome.
  • The number of non-human micro-organisms (bacteria, viruses, fungi, archaea and single-celled leukaryotes) inhabiting a healthy human adult is estimated to outnumber human cells by a ratio of 10 to 1.
  • The human microbiome contains about 3,000,000 non-human bacterial cells to our 23,000 human cells. (See correction below)
  • The total number of genes in our microbiome exceeds the number of genes in our human genome by a factor of at least 200.
  • So, even though the microbial cells making their home in and on us are only 1/10th to 1/100th the size of our human cells, they account for up to 5 pounds of an adult’s body weight.
  • To date, only a small percentage of the bacteria comprising our human microbiome have been identified.
Correction (8/22/2015): A reader named Stephen sent the following comment:

I just need to point out that you have one fact slightly, but importantly, inaccurate. You cite that:

The human microbiome contains about 3,000,000 non-human bacterial cells to our 23,000 human cells.

When in fact, you should replace the two occurrences of the word “cells” with the word “genes”. This fact is often misunderstood. What it means is that the human genome has about 23k unique genes, whereas the bacteria that inhabit us have about 3x10E6 unique genes, not that there are 3 million genes among them. The point is that the bacteria on our bodies possess incredible functional diversity and can do many things for our bodies that we cannot do ourselves.

 

 

(Source: welladjustedbabies.com)
(Source: welladjustedbabies.com)

 

And these miniscule critters aren’t invaders trying to harm us. The vast majority of them are necessary and beneficial to us – as we are to them.
Yet for a century, we’ve been unintentionally, but systematically, distorting and destroying the healthy workings of our various microbiomes with processed foods, pharmaceuticals – especially antibiotics, cleaning products, cosmetics, pesticides and herbicides, genetically modified foods and more, resulting in the degradation of our immune systems and huge increases in diseases and chronic medical conditions.
At the same time, and with many of the same products, we’ve also been degrading  healthy microbiomes in the soil and our water supplies – making not only humans ill but also wreaking havoc on the other fauna and flora on our planet.

 

 

 

Human Microbiome Map
Human Microbiome Map

 

 

 

 

 

 

THE HUMAN SKIN MICROBIOME

 

The Zoo on Our Skin (Source: discovermagazine.com)
The Zoo on Our Skin
(Source: discovermagazine.com)

 

From the  AOBiome website (AOBiome, 2014):

Human skin, a large and heterogenous organ, harbors a fascinating array of species of bacteria, fungi, and other microorganisms. The specific makeup of the skin flora depends on many factors, such as whether the particular skin area is dry, moist, or sebaceous, the age of the host, external conditions, etc. Dry forearms and hairy, moist underarms are very distinct habitats, despite their relative proximity. People living together also seem to share a larger portion of their microbimes than those are not cohabitating, and pet owners share some with their animal companions.

Here are some of the most common microorganisms that reside on our skin:

Propionibacteria are the most prevalent on sebaceous, or oily skin, such as nostrils, scalp, upper chest and back. They are lipophilic anaerobes, decomposing oily sebum secreted by our glands, producing propionic acid. Although they are present in infants and babies, they become more dominant around the onset of puberty, as the sebaceous glands increase their output. One of the bacterial strains, Propionibacterium acnes, is thought to be responsible for inflammation of the glands that can lead to acne.

Staphylococci have their name derived from Greek word for grape, as their colonies resemble grape clusters. They reside predominantly in the moist areas of the body, such as the armpit, the elbow crease, etc. As aerobic bacteria, they produce lactic acid that lowers the pH of the skin and controls growth of other microorganisms. They are particularly prevalent on the skin of babies and infants, their relative abundance decreasing with age. While normally harmless, certain species of staphylococci, such as S. aureus, can act as human pathogens. Methicilin-resistant S. aureus (MRSA) infections are a difficult public health problem in hospitals and beyond.

Corynebacteria are rod-shaped, and mostly innocuous. They also prefer moist environments, such as the navel, or back of the knee. They grow slowly, even when the food is abundant.

Betaproteobacteria are a diverse group, which includes Nitrosomonas, currently excluded from human skin. They are the most prevalent group in the dry areas, such as the forearms. Also, these are the bacteria that the dog owners have the most in common with their dogs

Malassezia – as fungi, Malassezia get a honorable mention. They are found on our skin in large quantities, and are typically harmless, but certain species can cause dandruff or skin discoloration.

 

 

Skin Microbiome (Source: skinmicrobiome.wordpress.com
Skin Microbiome
(Source: skinmicrobiome.wordpress.com)

 

 

 

 

NITROSOMONAS BACTERIA IN DIRT

Horse Rolling in Dirt
Horse Rolling in Dirt
Ever wonder why horses love to roll around in dirt? We know horses, like humans, sweat a lot. We also know how unpleasant our skin can feel – and smell – after we’ve worked up a sweat. David Whitlock, the M.I.T.- trained chemical engineer who invented AO+, theorized that horses dirt bathe to manage their sweat. He reasoned, “The only way that horses could evolve this behavior was if they had substantial evolutionary benefits from it.”
The goal of using AO+ spray is to encourage the growth of a healthy colony of probiotic bacteria on the skin. This probiotic bacterial colony will then act as a built-in cleanser, deodorant, anti-inflammatory and immune booster by feeding on the ammonia in our sweat, converting it into nitrite and nitric oxide.
Scientists at AOBiome hypothesize that humans also had healthy, mutually beneficial, colonies of ammonia-oxidizing bacteria (AOB), such as Nitrosomonas eutropha, living on our skins. These AOBs regulated our nitrogen metabolism. Then in the 20th century, we began regarding all bacteria as dangerous and started trying to scrub them all away. (AOBiome, 2014)

 

 

 

images-1

 

 

 

THE HYGIENE HYPOTHESIS

The Hygiene Hypothesis – also called the Biome Depletion Theory or the Lost Friends Theory – states that a lack of early childhood exposure to infectious agents, symbiotic microorganisms (eg, probiotic gut flora – referred to as Our Old Friends), and parasites increases susceptibility to allergic diseases by suppressing the natural development of the immune system. In particular, the lack of exposure is thought to lead to defects in the establishment of immune tolerance. (Wikipedia, 2014).
The Hygiene Hypothesis is consistent with the destruction of the ammonia oxidizing bacteria (AOB) on our skins. Many ingredients in most of our personal care products have been found in laboratory tests to inhibit or have been found  toxic to AOB: sodium lauryl sulfate, sodium coco-sulfate, castile-type soaps, and amine oxides (such as lauryl dimethyl amine oxide). AOBiome’s laboratory is still in the process of testing the AOB toxicity of other ingredients commonly found in soaps, shampoos, skin creams, and deodorants.
The encouraging news is that AOBiome has found ingredients that ARE compatible with ammonia oxidizing bacteria. Their goal is to test, certify and develop a variety of hygiene products with these ingredients – including soaps and shampoos. (AOBiome on facebook, 2013-2014)

 

 

 

WHY IT’S GOOD TO HAVE COLONIES OF THESE BACTERIA ON OUR SKINS

Here’s an explanation of why restoring healthy colonies of this bacteria on our skins is important – from the AOBiome website (AOBiome, 2014):

Modern hygiene has selectively depleted the natural balance of the skin microbiome particularly affecting AOB. By restoring the appropriate AOB levels, we believe a range of human health conditions could be impacted. AOBiome is interested in exploring potential physiologic effects including:

Improving skin architecture
Improving skin architecture

 

Preventing infection
Preventing infection

 

Improving vascularization
Improving vascularization

 

 

Before the advent of anionic surfactants, Nitrosomonas would have colonized our skin, our sweat glands in particular, constantly secreting low amounts of NO. Due to their particular sensitivity to detergents, however, they have been eradicated from our skin microbiome. As a consequence, we are dermatologically and systemically NO-deprived – in a mildly pro-inflammatory state, with a number of our systemic NO-mediated regulatory mechanisms out of balance. This deprivation may contribute to a number of skin conditions, such as eczema, psoriasis, potentially also neuropathies, and more. AOBiome aims to re-introduce Nitrosomonas to our skin’s bacterial flora, restoring natural NO levels, stabilizing the NO-dependent signaling pathways and alleviating symptoms resulting from NO imbalance.

Nitrosomonas are naturally occurring in most aquatic and soil environments and seem to totally lack pathogenic potential, as indicated by the absence of pathogenicity factors and also evidenced by the complete lack of human infections reported to date. Since Nitrosomonas depend on ammonia and urea for their growth, their numbers on the skin are necessarily limited, and are naturally regulated by the amount of sweat the body produces. This ensures that the amount of NO produced would be relatively low, without any adverse effects. Because of its reactivity, the Nitrosomonas-produced NO will exert most of its effects locally, in the skin of the host. If desirable, however, one could eliminate the bacteria using a simple soap treatment.

AOBiome’s scientists have also found that using concentrated AO+ led to a hundredfold decrease of Propionibacterium acnes, bacteria associated with acne breakouts. And they have found that a two week treatment with a formulation of AOB heals skin ulcers on diabetic mice.  (Scott, 2014)

 

 

 

 

ARE WE GOING TO GIVE UP SHOWERING?

AOBiome says NO. The probiotic bacteria in AO+ Refreshing Cosmetic Mist thrive in water so you can use it and also continue showering – just not lathering yourself up with soap or shampoo that will kill those useful bacteria. The ammonia oxidizing bacteria in AO+ can survive limited exposure to the chlorine and chloramine added to municipal water supplies to purify them. From the company’s facebook page (AOBiome, 2013-2014):
Our research shows that daily application along with normal showering in regular tap water produces a sustained level of AOB on skin. In our initial cosmetic study we showed that AOB are detectable and present in 95% of cases with daily showering and application and that AOB continue to survive in 60% of subjects for up to 7 days without additional applications as long as shampoo is not used. This is the basis for our recommendation that you apply AO+™ Refreshing Cosmetic Mist daily as part of your usual personal hygiene routine.
A note for those of you who’ve read the New York Times Magazine article, “My No-Soap, No-Shampoo, Bacteria-Rich Hygiene Experiment” (Scott, 2014), and came away from it thinking the choice will be between using the ammonia oxidizing bacterial spray or showering:
The article’s author was using the spray and not showering for 28 days as part of a clinical trial for AOBiome. When she started showering again but not also using the spray, the colony of ammonia oxidizing bacteria on her skin was quickly destroyed by showering with soap.
When the  Company has succeeded in bringing to market an AOB-friendly shampoo and AO+ Refreshing Cosmetic Mist is also readily available, we should be able to both shower and wash our hair with these products while maintaining a healthy colony of AOB. And when an AOB-friendly skin cream has been developed and approved for marketing to the public, we’ll also be able to nurture our AOB colonies by using it.

 

 showering

 

 

 

 

 

SAVING OUR SKINS – FIGURATIVELY AND LITERALLY

 

Credit: New York Times.com
Credit: New York Times.com

 

As Michael Pollan wrote in an excellent article last year titled Some of My Best Friends Are Germs (Pollan, 2013):

As a civilization, we’ve just spent the better part of a century doing our unwitting best to wreck the human-associated microbiota.

Now this brilliant biotech company, AOBiome, is working on a big piece of the solution to our ills. If you want to be wowed by the work they’re doing, take a look at their website.

 

 

(Credit: New York Times.com)
Credit: New York Times.com

 

 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 

Us - just 10% human
ALL OF US ARE ONLY 10% HUMAN

 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 

REFERENCES

AOBiome. (2014). Pioneering bacterial therapy for the skin. See: https://www.aobiome.com/company

AOBiome. (2013-2014). facebook.  See:  https://www.facebook.com/AOBiome

Baylor College of Medicine, Department of Molecular Virology and Microbiology. (2013-2014). The Human Microbiome Project.  See:  https://www.bcm.edu/departments/molecular-virology-and-microbiology/microbiome

Hardin, J.R. The Gut Microbiome – Our Second Genome. AllergiesAndYourGut.com.  See:  http://allergiesandyourgut.com/the-gut-microbiome-our-second-genome/

Martinko, K. (2014). Could bacteria be the new beauty trend that actually makes us healthier?  See:  http://www.treehugger.com/health/could-bacteria-be-new-beauty-trend-actually-makes-us-healthier.html

Polan, M. (2013). Some of My Best Friends Are Germs. New York Times Magazine, May 15 2013. See:  http://www.nytimes.com/2013/05/19/magazine/say-hello-to-the-100-trillion-bacteria-that-make-up-your-microbiome.html?pagewanted=all&_r=0

Scott, J. (May 22 2014). My No-Soap, No-Shampoo, Bacteria-Rich Hygiene Experiment.  The New York Times Magazine. See:  http://www.nytimes.com/2014/05/25/magazine/my-no-soap-no-shampoo-bacteria-rich-hygiene-experiment.html?action=click&module=Search&region=searchResults&mabReward=relbias:r,%5B%22RI:6%22,%22RI:12%22%5D&url=http://query.nytimes.com/search/sitesearch/?action=click&region=Masthead&pgtype=Homepage&module=SearchSubmit&contentCollection=Homepage&t=qry545&_r=1

Wikipedia. (June 2 2014). Hygiene Hypothesis. See:  http://en.wikipedia.org/wiki/Hygiene_hypothesis

Wikipedia. (June 3 2014). Human Microbiome.  See:  http://en.wikipedia.org/wiki/Human_microbiome

 

© Copyright 2014 Joan Rothchild Hardin. All Rights Reserved.

 

DISCLAIMER:  Nothing on this site or blog is intended to provide medical advice, diagnosis or treatment.